
Course in (Jetpack Compose)
Kotlin on Android. Android OS.
Android Studio HelloWorldAppDmitry Makarenkov

https://dmpsy.club

JetpackCompose <= (Kotlin && Android)

https://dmpsy.club

Target Audience

● Kotlin enthusiasts who target their applications to Android OS following

modern Jetpack Compose UI principles

Mind the story:

 Andy Rubin (the Founding Father of Android) was in love with robots to the point

that his friends called him Android.

(see https://en.wikipedia.org/wiki/Andy_Rubin)

https://en.wikipedia.org/wiki/Andy_Rubin

Mobile App R&D Big Picture
Manufacturers Apple Samsung, Huawei, Google,

Vivo, Xiaomi etc.
Huawei

Operating
system

iOS Android OS HarmonyOS

Installer files *.dmg (installer)
*.ipa (archive)

*.apk (installer),
*.aab (bundles)

*.hap, *.app

Preferred
IDE

Xcode Android Studio Dev Eco Studio

Native
Programming
Languages

Swift
Objective C

Kotlin (JetPack Compose)
Java (not recommended by
Google Play since 2019)

Java, eTS
ArcTS
JS

Alternative
languages

React Native (JS)
KMM (Kolin
Multiplatform Mobile)

React Native (JS) Kotlin (?)
React Native
(?)

Android OS Intro

● Android OS 1st release took place in 2008

● Android is Linux-based open source OS owned by Google

● Apps are running on top of the (Java Virtual Machine) JVM by Google

● Java is eventually replaced by Kotlin, the “preferred” language since 2019

● Google provides (Software Development Kits) SDKs for Android app

development for each unique (Application Programming Interface) API level

● For convenient development, use the latest Android Studio IDE, the most

popular IDE based on IntelliJ IDEA of JetBrains

● Android Studio output file formats: (*.apk, installers) or (*.aab, bundles)

● Key App Marketplaces: Google Play, AppGallery (Huawei), RuStore (Russia)

In-Use Android OS Versions & SDKs
Codename Version API Level

Android 13, Tiramisu 13 33

Android 12L, Snow Cone 12.1 32

Android 12, Snow Cone 12 31

Android 11, R, Red Velvet Cake 11 30

Android 10, Q, Quince Tart 10 29

Pie 9 28

Oreo 8.1.0 27

8.0.0 26

Nougat 7.1 25

7.0 24

Marshmallow 6.0 23

Lollipop 5.1 22

5.0 21

Statistics of Eysenck App Downloads from RuStore

Key Android App Parameters

● Language: Kotiln (as a preferred language since 2019)

● Output file formats : normally, *.apk as not all the stores accept bundles and you

cannot run *.aab on real devices or emulators

● Mind that the release version of the output file must be signed

● minSdk: 21 as defaulted by Android Studio (the OS allows installing your app

downto this Android OS version, otherwise the system denies to install it on

that particular device)

● targetSdk: 32 (default) or 33 (the latest API level)

● As of August, 2021, apps must target Android 11 (API level 30) or higher

● versionCode of your app, must be unique integer starting with 1

● versionName "1.0" is a string name shown to the end-User in the store

Build App Parameters Inside Android Studio Project

build.gradle(app) &
build.gradle(Project) contain
all build parameters

Possible build variants:

1. Unsigned debug
2. Unsigned release
3. Signed debug
4. Signed release

Build App Parameters Inside Android Studio Project

…and configurable dependencies

 of your project

Launch App Parameters Inside Android Studio Project

Manifest.xml contains main
launch information:

the app icon,

the app name,

the entry point, i.e., the first
module to launch on starting
the app (MainActivity)

App Tree of The Android Studio Project
Finally, the “app” project tree contains:

1. Manifest.xml, the main launch file
2. MainActivity.kt , the main entry Kotlin

source file
3. The res folder with drawables, strings

and other resources like Material Design
colors, theming etc.

4. Gradle (Project & Module) build scripts

 P.S. You may want to

use other tree

representations as

well (see left)

MainActivity class, the entry point of the app

MainAcitivy.kt contains the main app
class MainActivity that:

1. Sets the (UI) app content, Material
Design Theme

2. Defines the basic Surface
3. Calls the main UI function annotated

with @Compose

Let’s first discuss the app logical
structure and then get back to the
“composables” again

Three-Layered Architecture of the Application

UI Layer (UI elements and UI state
holders)

Domain Layer
(Optional layer, reusable logics)

Data Layer
(Repositories with business

logics,
Data sources)

Focus on the UI Layer:

● Jetpack Compose is the new toolkit

for building native Android layouts.

● It was launched in 2021 with the aim

to further simplify and accelerate

the UI development for Android

apps.

Jetpack Compose vs. Classic MDC approach
Jetpack Compose replaces:

1. Xml-based layouts (visual representation of UI components) separated from

2. the Kotlin code programming the UI components behavior

 with:

1. The single representation of the UI elements with “Composable functions” or “composables”

and implements:

2. The UDF (Unidirectional Data Flow) approach (“Events up”, “States down”):

UI elements send their Events to the upper layer

UI elements change their appearance based on the UI States received from the upper layer

Unidirectional Data Flow (UDF)

● Events go up to the upper

ViewModel layer

● ViewModel changes the UI states on

Events and/or Application data

received from the Data Layer

● ViewModel send the updated UI

states down to UI element to change

their appearance

(see https://developer.android.com/topic/architecture/ui-layer)

https://developer.android.com/topic/architecture/ui-layer

Layout & Code Replaced by @Composable

(see https://m3.material.io/components/divider/overview)

https://m3.material.io/components/divider/overview

The Composable Function:
1. Must be annotated with @Composable

2. Must be annotated with @Preview to be viewed in the Android Studio Previewer

3. The composable name is in PascalCase opposite to ordinary Kotlin functions (camelCase)

4. The composable functions return no value

5. One can define and re-use his/her own composable

Basic Building Blocks of Jetpack Compose:
1. The “container” elements, invisible but mastering the layout carcass:

Row, Column, Box, Scaffold etc.

2. The Material 3 Design Components, which make the real contents and implement interactions with

the app end-user:

 Button, Card, Chip, Dialog, TopAppBar etc.,

(see https://m3.material.io/components)

https://m3.material.io/components

The Practice Session Plan:
1. Download and install the latest Android Studio from https://developer.android.com/studio

2. Create a new Kotlin Empty Compose Activity (Material 3) Project

3. Review the project structure

4. Build and run in the emulator the unsigned debug project version

5. Find in app/build/outputs/apk/debug the *.apk file and deploy it to BlueStacks

6. Build the unsigned release *.apk file and try to deploy it to BlueStacks. Should deny installation

7. Upgrade your application to the latest targetSdk = 33, upgrade the dependencies

8. Upgrade the app versionCode = 2 and versionName = “1.1”

9. Change the app icon using Resource manager “+” “Image Asset”

10. Add more functionality to the app (Row/Column/Box/Button/ user-defined Button Block)

11. Rebuild the app, verify it works on the Emulator

12. Sign the app, generate the final signed *apk file (app/release/ *.apk) and upload it to BlueStacks

https://developer.android.com/studio

Next Videos to Follow

● Lecture 1 Practice Session

PS Download the present lecture from:

https://dmpsy.club/references/Kotlin/lesson_001_helloWorld.pdf

PPS I will translate this lecture into Russian if necessary, just let me know, please.

https://dmpsy.club/references/Kotlin/lesson_001_helloWorld.pdf

https://dmpsy.club
postmaster@dmspy.club

https://dmpsy.club

